FCAN–XGBoost: A Novel Hybrid Model for EEG Emotion Recognition

Author:

Zong Jing1,Xiong Xin1,Zhou Jianhua1ORCID,Ji Ying2,Zhou Diao1,Zhang Qi1

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Graduate School, Kunming Medical University, Kunming 650500, China

Abstract

In recent years, artificial intelligence (AI) technology has promoted the development of electroencephalogram (EEG) emotion recognition. However, existing methods often overlook the computational cost of EEG emotion recognition, and there is still room for improvement in the accuracy of EEG emotion recognition. In this study, we propose a novel EEG emotion recognition algorithm called FCAN–XGBoost, which is a fusion of two algorithms, FCAN and XGBoost. The FCAN module is a feature attention network (FANet) that we have proposed for the first time, which processes the differential entropy (DE) and power spectral density (PSD) features extracted from the four frequency bands of the EEG signal and performs feature fusion and deep feature extraction. Finally, the deep features are fed into the eXtreme Gradient Boosting (XGBoost) algorithm to classify the four emotions. We evaluated the proposed method on the DEAP and DREAMER datasets and achieved a four-category emotion recognition accuracy of 95.26% and 94.05%, respectively. Additionally, our proposed method reduces the computational cost of EEG emotion recognition by at least 75.45% for computation time and 67.51% for memory occupation. The performance of FCAN–XGBoost outperforms the state-of-the-art four-category model and reduces computational costs without losing classification performance compared with other models.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3