Affiliation:
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
Abstract
Aiming at the problem that existing emotion recognition methods fail to make full use of the information in the time, frequency, and spatial domains in the EEG signals, which leads to the low accuracy of EEG emotion classification, this paper proposes a multi-feature, multi-frequency band-based cross-scale attention convolutional model (CATM). The model is mainly composed of a cross-scale attention module, a frequency–space attention module, a feature transition module, a temporal feature extraction module, and a depth classification module. First, the cross-scale attentional convolution module extracts spatial features at different scales for the preprocessed EEG signals; then, the frequency–space attention module assigns higher weights to important channels and spatial locations; next, the temporal feature extraction module extracts temporal features of the EEG signals; and, finally, the depth classification module categorizes the EEG signals into emotions. We evaluated the proposed method on the DEAP dataset with accuracies of 99.70% and 99.74% in the valence and arousal binary classification experiments, respectively; the accuracy in the valence–arousal four-classification experiment was 97.27%. In addition, considering the application of fewer channels, we also conducted 5-channel experiments, and the binary classification accuracies of valence and arousal were 97.96% and 98.11%, respectively. The valence–arousal four-classification accuracy was 92.86%. The experimental results show that the method proposed in this paper exhibits better results compared to other recent methods, and also achieves better results in few-channel experiments.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects