An enhanced backstepping approach for motion control of underactuated autonomous surface vessels with input constraints

Author:

Dehghani Reza1,Abedi Esmaeil2

Affiliation:

1. Department of Mechanical Engineering, Graduate University of Advanced Technology, Iran

2. Department of Mechanical Engineering, Majlesi Branch, Islamic Azad University, Iran

Abstract

This paper focuses on the motion control of an underactuated autonomous surface vessel (UASV). A robust adaptive approach is proposed to control the UASV in spite of existence of uncertainties in the dynamic model and the external disturbances by integrating the backstepping method with input constraints, functional approximate technique (FAT) and projection operator. In the proposed controller, it is not required to compute the complex functions and their derivatives appearing in the traditional backstepping methods. The motion control strategy of the UASV is first derived based on the backstepping method. Then, the complex functions, appearing in the controller, are estimated by the FAT and Lyapunov based adaptive laws. This causes the inherent complexity of the backstepping technique, numerical derivatives of virtual inputs, is to be overcome. Moreover, the input limitations are considered by an auxiliary system. Stability analysis of system is performed by Lyapunov’s direct method. Several numerical simulations are carried out to confirm the effectiveness of the proposed method.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3