Design of an adaptive controller to capture maximum power from a variable speed wind turbine system without any prior knowledge of system parameters

Author:

Movahhed Neya Najmeh1ORCID,Saberi Sajad2,Rezaie Behrooz2ORCID

Affiliation:

1. Faculty of Electrical Engineering, Science and Research Branch, Islamic Azad University, Iran

2. Faculty of Electrical Engineering, Babol Noshirvani University of Technology, Iran

Abstract

Even though some wind turbine manufacturers are no longer active, and are not willing to disclose their intellectual property, their turbines are still in operation. Since the exact values of wind turbine parameters like the aerodynamic model, drive-train model and generator parameters are not always accessible, the design of a controller which does not require prior knowledge of the system parameters can be very useful and effective. As a result, this paper proposes a disturbance observer-based controller to harvest the maximum power from a wind turbine system with fully unknown parameters. To reduce control efforts, a disturbance observer is designed to estimate unknown nonlinear terms caused by unknown model parameters in the presence of unknown control coefficient that uses only the tracking error to estimate nonlinear disturbance. Compared with previously published works, in this paper, both aerodynamic model and drive-train model parameters are assumed to be fully unknown. Closed-loop stability of the proposed controller is analyzed by the Lyapunov stability theorem. To demonstrate the performance of the proposed controller, it is compared with some existing controllers. Comparative simulation results show its effectiveness. Furthermore, although the proposed controller does not require system parameters and includes fewer tuning parameters, it shows the same tracking performance as the other three controllers. The numerical comparative results are listed in a table, which shows that Mean Square Error (MSE) of the proposed controller is 75% less than minimum MSE of the other three controllers of previous works, while its control effort is 1.7% higher than the minimum control effort of the other three.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3