Smart Frequency Control of a Multicarrier Microgrid in the Presence of V2G Electric Vehicles

Author:

Seyed Beheshti Fini Seyed Ali1ORCID,Shariatmadar Seyed Mohammad1ORCID,Amir Vahid1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran

Abstract

In recent years, renewable resources have widely been used to provide necessary energy due to the increasing fossil fuel prices, environmental pollution concerns, and the necessity to meet the growth in energy demands. The output of renewable resources especially solar and wind energies is associated with meteorological parameters, so their reliability creates many challenges for the energy sector. The consumption peak of the gas network is taken into account to adjust the frequency of the microgrid (MG). Both gas network load and electric load distributions are adjusted at the same time. In a multicarrier network, the frequency is regulated in a nonlinear manner. Meanwhile, new necessary loads for production and electric vehicles have imposed new loads on the power network; if proper management is not performed to respond to these new loads, the increase of network frequency deviations may lead the network to fail and even break down. In this paper, a network of various sources including the wind turbine, solar panel, storage (battery and flywheel), electric vehicle (EV), diesel generator (DG) electric power generation, and multicarrier energy hub (MCEH) with combined heat and power (CHP) was designed to examine vehicle-to-grid (V2G) electric vehicles. The ANFIS adaptive fuzzy control method was used to provide a fine-tuning frequency of the network. A comparison between the suggested approach and a fuzzy controller system was carried out to examine the superiority of the introduced approach to the frequency control. The simulations were obtained using MATLAB/SIMULINK software. The simulation outcomes indicated that the SMART controller can achieve good efficiency in frequency regulation and reliable output power in the examined microgrid. Further comparison in terms of effective (RMS) values and maximum frequency deviation indicates the superior performance of the proposed method over the fuzzy method.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Reference65 articles.

1. Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment

2. Hybrid AC/DC Provisional Microgrid Planning Model Considering Converter Aging

3. Resilience-Oriented Planning of Multi-Carrier Microgrids under Cyber-Attacks

4. Automatically density based breast segmentation for mammograms by using dynamic K-means algorithm and seed based region growing;A. Elmoufidi

5. Joint optimization of electric vehicle fast charging and DC fast charging station;M. H. Abbasi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing and Modelling of Portable Charger for Electric Vehicles Using MATLAB;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3