Bearing performance degradation assessment using adversarial fusion convolutional autoencoder based on multi-source information

Author:

Wang Enxiu12,Zhou Haoxuan12,Wen Guangrui12ORCID,Huang Ziling12,Liu Zimin12,Chen Xuefeng1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China

2. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an, China

Abstract

Bearing operation states will directly determine the performance of the equipment; thus, monitoring operation status and degradation indicators is the key to ensuring continuous and healthy operation of the equipment. However, most of the research uses single-source information data, which makes it difficult to model when dealing with multi-source information, complex data distribution, and noise. In this paper, a bearing performance degradation assessment method based on multi-source information is proposed to comprehensively utilize the data signals of different structures, spaces, types, and sources. First, the adversarial fusion convolutional autoencoder is constructed for obtaining the degradation index of the bearing, while the adversarial learning strategy is applied to achieve the effect of enhancing the robustness and sensitivity of the degradation indicators extracted by the network. Then the degradation index is input into the support vector data description to determine the fault anomalies of the degradation index adaptively and the fuzzy c-means algorithms to obtain the final rolling bearing performance degradation evaluation results. Through the verification results of two experiment datasets, it is found that the proposed model can achieve accurate evaluation and quantitative analysis of the performance degradation process of bearings. As a result, the entire network ensures the reconstruction accuracy of normal samples while simultaneously stretching the reconstruction error of abnormal samples to achieve accurate monitoring of degradation onset.

Funder

national key research and development program of china

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3