Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD

Author:

Feng Zhengjiang,Wang ZhihaiORCID,Liu XiaoqinORCID,Li Jiahui

Abstract

In light of the problems of a single vibration feature containing limited information on the degradation of rolling bearings, the redundant information in high-dimensional feature sets inaccurately reflecting the reliability of rolling bearings in service, and assessments of the degradation performance being disturbed by outliers and false fluctuations in the signal, this study proposes a method of assessing rolling bearings’ performance in terms of degradation using adaptive sensitive feature selection and multi-strategy optimized support vector data description (SVDD). First, a high-dimensional feature set of vibration signals from rolling bearings was extracted. Second, a method combining the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and K-medoids was used to comprehensively evaluate the features with multiple evaluation indicators and to adaptively select better degradation features to construct the sensitive feature set. Next, multi-strategy optimization of the SVDD model was carried out by introducing the autocorrelation kernel regression (AAKR) and a multi-kernel function to improve the ability of the evaluation model to overcome outliers and false fluctuations. Through validation, it could be seen that the method in this study uses samples of rolling bearings in the healthy early stage to establish the evaluation model, which can adaptively determine the starting point of the bearing’s degradation. The stability and accuracy of the model were effectively improved.

Funder

National Natural Science Foundation of China

Key Scientific Research Projects of Yunnan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3