Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine

Author:

An Xueli1,Tang Yongjun1

Affiliation:

1. China Institute of Water Resources and Hydropower Research, Haidian District, Beijing 100038, China

Abstract

For the unsteady characteristics of a fault vibration signal of a wind turbine’s rolling bearing, a bearing fault diagnosis method based on variational mode decomposition of the energy distribution is proposed. Firstly, variational mode decomposition is used to decompose the original vibration signal into a finite number of stationary components. Then, some components which comprise the major fault information are selected for further analysis. When a rolling bearing fault occurs, the energy in different frequency bands of the vibration acceleration signals will change. Energy characteristic parameters can then be extracted from each component as the input parameters of the classifier, based on the K nearest neighbour algorithm. This can identify the type of fault in the rolling bearing. The vibration signals from a spherical roller bearing in its normal state, with an outer race fault, with an inner race fault and with a roller fault were analyzed. The results showed that the proposed method (variational mode decomposition is used as a pre-processor to extract the energy of each frequency band as the characteristic parameter) can identify the working state and fault type of rolling bearings in a wind turbine.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3