Characteristic parameter degradation prediction of hydropower unit based on radial basis function surface and empirical mode decomposition

Author:

An Xueli1,Pan Luoping1

Affiliation:

1. China Institute of Water Resources and Hydropower Research, Beijing, China

Abstract

A prediction method of characteristic parameter degradation for a hydropower unit is presented based on radial basis function (RBF) interpolation, empirical mode decomposition (EMD), approximate entropy, artificial neural network and grey theory. Considering the effect of active power and working head, the characteristic parameter degradation model of a hydropower unit is built by using RBF interpolation. The EMD method is used to decompose the characteristic parameter degradation time series of the hydropower unit into a number of intrinsic mode function (IMF) components. The approximate entropy of each IMF component is calculated. According to their different properties, the neural network or grey theory is used to predict them, respectively. All the predicted results are added to obtain the final forecasting result of the original characteristic parameter degradation time series. The case study results demonstrate that the proposed method has an extremely high prediction accuracy, and can be applied in the hydropower unit condition prediction effectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3