Adaptive H-infinity extended Kalman filtering for a navigation system in presence of high uncertainties

Author:

Yazdkhasti Setareh1,Sabzevari Danial2ORCID,Sasiadek Jurek Z.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Carleton University, Canada

2. Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Italy

Abstract

The optimal performance of the Kalman filters is highly dependent on the measurement and process noise characteristics, making the whole system unable to achieve the desired estimation in the presence of non-Gaussian mean noise distribution and high initial uncertainties. Recently, the H-infinity filter, as a robust algorithm, has been broadly used, as it is not being dependent on the pre-knowledge of the noise nature; however, making a balance between high robustness and estimation accuracy is a challenging issue. Hence, to overcome this problem, a new adaptive H-infinity extended Kalman filter (AHEKF) was designed in this paper, which benefits from both high robustness and precision. The suggested algorithm contains two adaptive sections to achieve high accuracy as well as controlling the effects of time-varying noise characteristics, high initial uncertainties, and abnormal data that can degrade the accuracy of state estimation in an integrated navigation system. The presented algorithm was used to integrate data from two independent sensors data. The simulation results for an inertial navigation system (INS)/global positioning system (GPS) sensor fusion are presented and compared with the standard H-infinity filter, extended Kalman filter (EKF), and unscented Kalman filter (UKF) to show the effectiveness of the proposed algorithm. Evaluations demonstrate that the AHEKF achieves over 50% higher accuracy and robustness, and over 2.5 times faster convergence of estimation errors than the standard H-infinity filter.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3