Application of a neuro-fuzzy controller for single machine infinite bus power system to damp low-frequency oscillations

Author:

Sabo Aliyu12ORCID,Abdul Wahab Noor Izzri1,Othman Mohammad Lutfi1,Mohd Jaffar Mai Zurwatul Ahlam3,Beiranvand Hamzeh4,Acikgoz Hakan5

Affiliation:

1. Advanced Lightning, Power, and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Malaysia

2. Department of Electrical and Electronics Engineering, Nigerian Defence Academy, Nigeria

3. Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM), Malaysia

4. Department of Electrical Engineering, Lorestan University, Iran

5. Department of Electrical Electronics Engineering, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Turkey

Abstract

Generally, power systems experience a variety of disturbances that can result in low frequency electromechanical oscillations. These low frequency oscillations (LFOs) take place among the rotors of synchronous generators connected to the power system. These oscillations may sustain and grow to cause system separation if no adequate damping is provided. Power system stabilizers (PSSs) are one of the alternative devices used to solve this rotor oscillation problem. The major limitation of using PSSs at the excitation system of synchronous machine is that the conventional PSS is a permanent parameter type operating under a particular system operating condition, and its parameters are acquired through trial and error. An efficient way of operating the PSS has been by designing the PSS parameters using a powerful optimization procedure. However, designing PSS damping controller is a cumbersome task as it needs a comprehensive test system modeling and a heavy computational burden on the system. In this research, a novel, model-free neuro-fuzzy controller (NFC) is designed as the LFOs’ damping controller to substitute the traditional PSS system making the power system simple without complications in PSS design and parameter optimization. The proposed controller application implements the LFOs’ control without a linearized mathematical model of the system, as such it makes the system less complex and bulky. Single machine infinite bus (SMIB) test system was simulated in SIMULINK domain with the PSSs and with the proposed controller to compare the NFC effectiveness. The simulation outcome for the eigenvalue study with NFC stabilizer yields steady eigenvalues that enhanced the damping status of the system greater than 0.1 with decreased overshoots and time to rise via the proposed NFC process than with the conventional FFA-PSS. Similarly, the generator transient reaction also presents the ω and δ based on the time to settle was improved by 64.66% and 28.78%, respectively, via the proposed NFC process than with the conventional FFA-PSS. Finally, the conventional PSS was found to be complicated in its design, parameter optimization and less effective than the proposed controller for the LFOs’ control.

Funder

universiti putra malaysia

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3