Robust actuator and sensor fault reconstruction of wind turbine using modified sliding mode observer

Author:

Rahnavard Mostafa1,Ayati Moosa1,Yazdi Mohammad Reza Hairi1

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

This paper proposes a robust fault diagnosis scheme based on modified sliding mode observer, which reconstructs wind turbine hydraulic pitch actuator faults as well as simultaneous sensor faults. The wind turbine under consideration is a 4.8 MW benchmark model developed by Aalborg University and kk-electronic a/s. Rotor rotational speed, generator rotational speed, blade pitch angle and generator torque have different order of magnitudes. Since the dedicated sensors experience faults with quite different values, simultaneous fault reconstruction of these sensors is a challenging task. To address this challenge, some modifications are applied to the classic sliding mode observer to realize simultaneous fault estimation. The modifications are mainly suggested to the discontinuous injection switching term as the nonlinear part of observer. The proposed fault diagnosis scheme does not require know the exact value of nonlinear aerodynamic torque and is robust to disturbance/modelling uncertainties. The aerodynamic torque mapping, represented as a two-dimensional look up table in the benchmark model, is estimated by an analytical expression. The pitch actuator low pressure faults are identified using some fault indicators. By filtering the outputs and defining an augmented state vector, the sensor faults are converted to actuator faults. Several fault scenarios, including the pitch actuator low pressure faults and simultaneous sensor faults, are simulated in the wind turbine benchmark in the presence of measurement noises. Simulation results show that the modified observer immediately and faithfully estimates the actuator faults as well as simultaneous sensor faults with different order of magnitudes.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3