Scene terrain classification for autonomous vehicle navigation based on semantic segmentation method

Author:

Julius Fusic S1ORCID,Hariharan K2,Sitharthan R3ORCID,Karthikeyan S1

Affiliation:

1. Department of Mechatronics, Thiagarajar College of Engineering, India

2. Department of Electronics and Communication Engineering, Thiagarajar College of Engineering, India

3. School of Electrical Engineering, Vellore Institute of Technology, India

Abstract

Autonomous transportation is a new paradigm of an Industry 5.0 cyber-physical system that provides a lot of opportunities in smart logistics applications. The safety and reliability of deep learning-driven systems are still a question under research. The safety of an autonomous guided vehicle is dependent on the proper selection of sensors and the transmission of reflex data. Several academics worked on sensor-based difficulties by developing a sensor correction system and fine-tuning algorithms to regulate the system’s efficiency and precision. In this paper, the introduction of vision sensor and its scene terrain classification using a deep learning algorithm is performed with proposed datasets during sensor failure conditions. The proposed classification technique is to identify the mobile robot obstacle and obstacle-free path for smart logistic vehicle application. To analyze the information from the acquired image datasets, the proposed classification algorithm employs segmentation techniques. The analysis of proposed dataset is validated with U-shaped convolutional network (U-Net) architecture and region-based convolutional neural network (Mask R-CNN) architecture model. Based on the results, the selection of 1400 raw image datasets is trained and validated using semantic segmentation classifier models. For various terrain dataset clusters, the Mask R-CNN classifier model method has the highest model accuracy of 93%, that is, 23% higher than the U-Net classifier model algorithm, which has the lowest model accuracy nearly 70%. As a result, the suggested Mask R-CNN technique has a significant potential of being used in autonomous vehicle applications.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3