Abstract
In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challenging due to real-world complications. This study provides a real-time solution to the problem of obtaining hallway scenes from an exclusive image. The authors predict a dense scene using a multi-scale fully convolutional network (FCN). The output is an image with pixel-by-pixel predictions that can be used for various navigation strategies. In addition, a method for comparing the computational cost and precision of various FCN architectures using VGG-16 is introduced. The binary semantic segmentation and optimal obstacle avoidance navigation of autonomous mobile robots are two areas in which our method outperforms the methods of competing works. The authors successfully apply perspective correction to the segmented image in order to construct the frontal view of the general area, which identifies the available moving area. The optimal obstacle avoidance strategy is comprised primarily of collision-free path planning, reasonable processing time, and smooth steering with low steering angle changes.
Funder
Hanoi University of Science and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献