Current cycle feedback iterative learning control for tracking control of magnetic levitation system

Author:

Jonnalagadda Vimala Kumari1,Elumalai Vinodh Kumar1ORCID,Agrawal Shantanu1

Affiliation:

1. School of Electrical Engineering, Vellore Institute of Technology, India

Abstract

This paper presents the current cycle feedback iterative learning control (CCF-ILC) augmented with the modified proportional integral derivative (PID) controller to improve the trajectory tracking and robustness of magnetic levitation (maglev) system. Motivated by the need to enhance the point to point control of maglev technology, which is widely used in several industrial applications ranging from photolithography to vibration control, we present a novel CCF-ILC framework using plant inversion technique. Modulating the control signal based on the current tracking error, CCF-ILC reduces the dependency on accurate plant model and significantly improves the robustness of the closed loop system by synthesizing the causal filters to counteract the effect of model uncertainty. To assess the stability, we present a maximum singular value based criterion for asymptotic stability of linear iterative system controlled using CCF-ILC. In addition, we prove the monotonic convergence of output sequence in the neighbourhood of reference trajectory. Finally, the proposed control framework is experimentally validated on a benchmark magnetic levitation system through hardware in loop (HIL) testing. Experimental results substantiate that synthesizing CCF-ILC with the feedback controller can significantly improve the trajectory tracking and robustness characteristics of maglev system.

Funder

vit university

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3