Affiliation:
1. Military Vehicle Engineering Department, Army Military Transportation University, China
2. Center for Control Theory and Guidance Technology, Harbin Institute of Technology, China
Abstract
This paper addresses the distributed finite-time tracking problem for multiple uncertain mechanical systems with dead-zone input and external disturbances. An observer-based adaptive finite-time consensus protocol is designed, which consists of two steps. Firstly, distributed observers are developed such that all the mechanical systems can obtain the leader’s state in finite settling time. Then, based on backstepping method and adding a power integrator technique, the finite-time consensus protocol and appropriate adaptive laws are designed to track the estimated leader’s state. Rigorous proofs show that the tracking errors between each mechanical system and the leader can converge to a small neighborhood of origin in finite time despite the presence of dead-zone nonlinearity and external disturbances. Finally, simulation example is provided to demonstrate the effectiveness of the proposed scheme.
Funder
national natural science foundation of china
national basic research program of china (973 program)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献