Neural network inverse system decoupling control strategy of BLIM considering stator current dynamics

Author:

Bu Wenshao1,He Fangzhou2,Li Ziyuan1,Zhang Haitao2,Shi Jingzhuo1

Affiliation:

1. Electrical Engineering College, Henan University of Science and Technology, Luoyang, China

2. Information Engineering College, Henan University of Science and Technology, Luoyang, China

Abstract

The bearingless induction motor (BLIM) is a multi-variable, non-linear, strong coupling system. To achieve higher performance control, a novel neural network inverse system decoupling control strategy considering stator current dynamics is proposed. Taking the stator current dynamics of the torque windings into account, the state equations of the BLIM system is established first. Then, the inverse system model of the BLIM is identified by a three-layer neural network; by means of the neural network inverse system method, the BLIM system is decoupled into four independent second-order linear subsystems, include a rotor flux subsystem, a motor speed subsystem and two radial displacement component subsystems. On this basis, the neural network inverse decoupling control system is constructed, the simulation verification and analyses are performed. From the simulation results, it is clear that when the proposed decoupling control strategy is adopted, not only can the dynamic decoupling control between relevant variables be achieved, but the control system has a stronger anti-load disturbance ability, smaller overshoot and better tracking performance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3