Abstract
PurposeThe purpose of the control method proposed in this paper is to address the problem of the poor anti-interference of the suspension winding current in the traditional bearingless induction motor (BL-IM) direct suspension force control process.Design/methodology/approachA model predictive direct suspension force control of a BL-IM based on sliding mode observer is proposed in this paper. The model predictive control (MPC) is introduced to the traditional direct suspension force control to improve the anti-interference of the suspension current. A sliding mode flux linkage observer is designed and applied to the MPC system, which reduces the error of the parameter observation and improves the robustness of the system. The strategy is designed and implemented in the MATLAB/Simulink and the two-level AC speed regulation platform.FindingsThe simulation and experimental results show that the performance of the BL-IM under the control method proposed in this paper is better than that under the traditional direct suspension force control, and the suspension performance of the motor and the anti-interference of the control system are improved.Originality/valueThis study helps to improve the suspension performance of the motor and the anti-interference of the control system.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献