A particle-filtering approach for on-line fault diagnosis and failure prognosis

Author:

Orchard Marcos E.1,Vachtsevanos George J.2

Affiliation:

1. School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250, USA, Electrical Engineering Department, University of Chile, Av. Tupper 2007, Santiago, Chile,

2. School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250, USA

Abstract

This paper introduces an on-line particle-filtering (PF)-based framework for fault diagnosis and failure prognosis in non-linear, non-Gaussian systems. This framework considers the implementation of two autonomous modules. A fault detection and identification (FDI) module uses a hybrid state-space model of the plant and a PF algorithm to estimate the state probability density function (pdf) of the system and calculates the probability of a fault condition in real-time. Once the anomalous condition is detected, the available state pdf estimates are used as initial conditions in prognostic routines. The failure prognostic module, on the other hand, predicts the evolution in time of the fault indicator and computes the pdf of the remaining useful life (RUL) of the faulty subsystem, using a non-linear state-space model (with unknown time-varying parameters) and a PF algorithm that updates the current state estimate. The outcome of the prognosis module provides information about the precision and accuracy of long-term predictions, RUL expectations and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary gear plate are used to validate the proposed approach.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 265 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3