Pitting corrosion diagnostics and prognostics for miter gates using multiscale simulation and image inspection data

Author:

Qian Guofeng1,Wu Zihan1,Hu Zhen2ORCID,Todd Michael D.1ORCID

Affiliation:

1. Department of Structural Engineering, University of California San Diego, La Jolla, CA, USA

2. Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, Dearborn, MI, USA

Abstract

Physics-based high-fidelity pitting corrosion simulation models have successfully predicted the evolution of corrosion pit morphology for given mechanical and environmental conditions. However, applying such models for pitting corrosion diagnostics and prognostics in large civil infrastructures such as found in the inland waterways navigation enterprise is very challenging, primarily due to the impracticality of measuring individual pits. This paper addresses this challenge by bridging the gap between physics-based pitting corrosion simulation and vision-based pitting corrosion inspection of large civil infrastructures. The framework proposed in this paper consists of four main modules: mesoscale pitting corrosion simulation using the phase-field method, macroscale structural analysis, pitting corrosion detection using machine learning, and updating physics-based simulation models based on pitting corrosion detection. It begins with developing a forward simulation framework to predict the evolution of pitting corrosion on large civil infrastructure using multiscale analysis. A convolutional neural network (CNN)-based pit detection method is created in parallel to autonomously identify and extract pitting corrosion observations from corrosion inspection images. Finally, an approximate Bayesian computation numerical framework is proposed to update three key model parameters in the forward pitting corrosion simulation model using the detection results from the trained CNN model. The updated multiscale simulation model can then be used for pitting corrosion prognostics. A practical application example is demonstrated on miter gates to show the effectiveness of the proposed framework.

Funder

Engineer Research and Development Center

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3