Affiliation:
1. School of Automation, Nanjing University of Science and Technology, Nanjing, People’s Republic of China
Abstract
This paper addresses the problem of robust adaptive finite-time tracking control for a class of mechanical systems in the presence of model uncertainties, unknown external disturbances, and input nonlinearities containing saturation and deadzone. Without imposing any conditions on the model uncertainties, radial basis function neural networks are used to approximate unknown nonlinear continuous functions, and an adaptive tracking control scheme is proposed by exploiting the recursive design method. It is shown that the input saturation and deadzone model can be expressed as a simple linear system with a time-varying gain and bounded disturbance. An adaptive compensation term for the upper bound of the lumped disturbance is introduced. The semi-global finite-time uniform ultimate boundedness of the corresponding closed-loop tracking error system is proved with the help of the finite-time Lyapunov stability theory. Finally, an example is given to demonstrate the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献