Affiliation:
1. Department of Mathematics, Huizhou University, Guangdong, China
2. Department of Electrical and Computer Engineering, University of Western Ontario, Ontario, Canada
Abstract
This paper investigates the leaderless and leader-following consensus problem for a class of second-order multi-agent systems subject to input saturation, that is, the control input is required to be a priori bounded. Moreover, the control coefficients are assumed to be unavailable, which cannot be lower or upper bounded by any known constants. Distributed consensus protocols are proposed based only on agents’ own velocity state information and relative position state information among neighbouring agents and the leader. By virtue of the adaptive control technique, algebraic graph theory and Barbalat’s lemma, it is proved that the states of the multi-agent systems can achieve consensus under the assumption that the interconnection topology is undirected and connected. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results.
Funder
the Science and Technology Program of Huizhou City
the Natural Science Foundation of Huizhou University
the Research Fund for the Doctoral Program of Huizhou University
the National Natural Science Foundation of China
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献