Collaborative Control of Multimotor Systems for Fixed-Time Optimisation Based on Virtual Main-Axis Speed Compensation Structure

Author:

Zhang Changfan1ORCID,Xiao Mingjie1ORCID,He Jing1ORCID,Liu Zhitian2,Yang Xingxing1,Zhang Qian1ORCID,Chen Hongrun1

Affiliation:

1. College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412000, China

2. State Grid Fuyang City Chengjiao Electric Power Supply Company, Fuyang 236000, China

Abstract

In response to the high-speed and high-precision collaborative control requirements of the multimotor system for filling, a new type of virtual master-axis control structure is proposed and a multimotor fixed-time optimized collaborative control algorithm is designed. Firstly, coupling relationship between virtual and slave motors is effectively established by designing a velocity compensation module for the virtual motor. Secondly, the sliding mode observer (SMO) is used to reconstruct the composite disturbance composed of motor parameter perturbation and load disturbance. Finally, the variable gain terminal sliding mode controller (SMC) is designed to ensure that each slave motor can track the given value within a fixed time. The fast convergence of the system can be proved by the fixed-time convergence theorem and Lyapunov’s stability theorem. The simulation results show that, compared with the traditional virtual main-axis control strategy, the proposed method is more effective for the tracking control of each slave motor in the initial stage.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryptocurrency Adoption and Its Implications: A Literature Review;E3S Web of Conferences;2023

2. Synchronous control system of virtual main-axis based on extended sliding mode disturbance observer;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3