Vibration suppression and attitude control for the formation flight of flexible satellites by optimally tuned on-off state-dependent Riccati equation approach

Author:

Rouzegar Hossein1ORCID,Khosravi Alireza1ORCID,Sarhadi Pouria1

Affiliation:

1. Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Iran

Abstract

In this paper, vibration suppression and attitude control for the formation flight of flexible satellites using optimally tuned on-off SDRE (state-dependent Riccati equation) approach is discussed. A formation consisting of flexible satellites has highly nonlinear dynamics and the corresponding satellites are subject to vibrations as well as uncertainties due to the practical conditions. Vibrations that are mainly caused by flexible modes of the satellites disorganize the coordination and hinder the formation stability as well as decreasing its performance and lifetime. Hence, flexibility should be considered in formation model and the coordination control needs to address such challenges. Owing to capabilities of SDRE approach for nonlinear systems, it is used as the coordination control. Satellites are assumed to be equipped with thrusters as their actuators which requires the control to be applied as on-off pulses. To this end, an algorithm is suggested to efficiently convert SDRE control into on-off pulses. For optimal tuning of the controller, the particle swarm optimization (PSO) algorithm is employed. Stability of the system has also been analyzed via a Lyapunov-based approach utilizing the region of attraction concept. The proposed on-off SDRE approach has shown to effectively suppress the vibrations in the presence of uncertainties leading to the accurate coordination of the whole formation while consuming less energy. Simulation results show the capability, efficiency, robustness and stability of the suggested approach.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3