Model-free adaptive control scheme for EGR/VNT control of a diesel engine using the simultaneous perturbation stochastic approximation

Author:

Ishizuka Shinichi1,Kajiwara Itsuro1,Sato Junichi2,Hanamura Yoshifumi2,Hanawa Satoshi3

Affiliation:

1. Division of Human Mechanical Systems and Design, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan

2. Engine Experiment Department No.1, ISUZU Motors Limited, 8, Tsuchidana, Fujisawa, Kanagawa 252-0881, Japan

3. PT Product Planning & Engineering Department No.2, ISUZU Motors Limited, 8, Tsuchidana, Fujisawa, Kanagawa 252-0881, Japan

Abstract

To meet the more stringent environmental requirements of automobile exhaust gas emissions, diesel engines have recently received increased attention due to their high heat efficiency. To lower fuel consumption and reduce exhaust gas simultaneously, fuel combustion must be more precisely controlled. For example, the oxygen concentration, which affects emissions, is controlled by exhaust gas recirculation (EGR) and variable nozzle turbo (VNT). However, realizing a controlled design is difficult due to system non-linearity and strong interference between EGR and VNT. Recently, various design methods have employed the so-called model-based control design, but this design approach is difficult to use when the controlled object is complex. Currently, mass production uses gain scheduling of map-based on proportional–integral–derivative (PID) control, in which each gain is tuned at various operational points. However, map calibration has many drawbacks, including time-consuming tuning, difficulty tuning during transient operations and problems adapting to the individual variations in the engine characteristics. This study proposes a construction method for a model-free adaptive PID controller using the simultaneous perturbation stochastic approximation (SPSA) and its performance is confirmed in an engine bench test.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3