Direct tuning of the data-driven controller considering closed-loop stability based on a fictitious reference signal

Author:

Yahagi Shuichi12ORCID,Kajiwara Itsuro1ORCID

Affiliation:

1. Division of Human Mechanical Systems and Design, Hokkaido University, Sapporo, Hokkaido, Japan

2. 6th Research Department, ISUZU Advanced Engineering Center Ltd., Fujisawa-shi, Kanagawa, Japan

Abstract

The direct tuning of controller parameters, which is based on data-driven control, has been attracting considerable attention because of the ease of its control system design. In practical use, it is important to consider the stability of the closed-loop system and model matching with few design parameters. In this study, we propose a direct tuning method based on a fictitious reference signal that considers the bounded-input bounded-output (BIBO) and model matching without repeating experiments. The proposed method includes two steps. In the first step, the BIBO stability is satisfied. The pole information is lost in the cost function of the conventional method using a fictitious reference signal. Then, we derive a new cost function that can prevent the loss of the pole information. This provides controller parameters that can stabilize the closed-loop system. The model matching between the reference model and the closed-loop system is considered in the second step. When model matching is achieved, the characteristics of the reference model almost match those of the closed-loop system, including the gain and phase margins. The parameters of the reference model are automatically tuned to realize model matching. Using the two-step method, we can obtain parameters considering BIBO stability and the model matching. In addition, there are no design parameters apart from the dealing noise. Two simulations and an experiment were performed on a system with dead time to verify the effectiveness of the proposed two-step method. The results showed that the proposed method provides BIBO stability and model-matched control parameters from the measured data through a one-time experiment without trial and error.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3