Approach for short-term wind power prediction via kernel principal component analysis and echo state network optimized by improved particle swarm optimization algorithm

Author:

Tian Zhongda1ORCID

Affiliation:

1. School of Artificial Intelligence, Shenyang University of Technology, P.R. China

Abstract

In recent years, short-term wind power forecasting has proved to be an effective technology, which can promote the development of industrial informatization and play an important role in solving the control and utilization problems of renewable energy system. However, the application of short-term wind power prediction needs to deal with a large number of data to avoid the instability of forecasting, which is facing more and more difficulties. In order to solve this problem, this paper proposes a novel prediction approach based on kernel principal component analysis and echo state network optimized by improved particle swarm optimization algorithm. Short-term wind power generation is affected by many factors. The original multi-dimensional input variables are pre-processed by kernel principal component analysis to determine the principal components that affect wind power. The dimension of principal component is less than the original input data, which reduces the complexity of modeling. The convergence and stability of the echo state network can be improved by using the principal component of the input variable. The advantage is to reduce the input variables, eliminate the correlation between the input variables, and improve the prediction performance of the prediction model. Furthermore, an improved particle swarm optimization algorithm is proposed to optimize the dynamic reservoir parameters of echo state network. Compared with other state-of-the-art prediction models, the case studies show that the proposed approach has good prediction performance for actual wind power data.

Funder

Liaoning Provincial Key Research and Development Plan, China

Natural Science Foundation of Liaoning Province of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3