The Hybridization of Ensemble Empirical Mode Decomposition with Forecasting Models: Application of Short-Term Wind Speed and Power Modeling

Author:

Bokde NeerajORCID,Feijóo AndrésORCID,Al-Ansari NadhirORCID,Tao Siyu,Yaseen Zaher MundherORCID

Abstract

In this research, two hybrid intelligent models are proposed for prediction accuracy enhancement for wind speed and power modeling. The established models are based on the hybridisation of Ensemble Empirical Mode Decomposition (EEMD) with a Pattern Sequence-based Forecasting (PSF) model and the integration of EEMD-PSF with Autoregressive Integrated Moving Average (ARIMA) model. In both models (i.e., EEMD-PSF and EEMD-PSF-ARIMA), the EEMD method is used to decompose the time-series into a set of sub-series and the forecasting of each sub-series is initiated by respective prediction models. In the EEMD-PSF model, all sub-series are predicted using the PSF model, whereas in the EEMD-PSF-ARIMA model, the sub-series with high and low frequencies are predicted using PSF and ARIMA, respectively. The selection of the PSF or ARIMA models for the prediction process is dependent on the time-series characteristics of the decomposed series obtained with the EEMD method. The proposed models are examined for predicting wind speed and wind power time-series at Maharashtra state, India. In case of short-term wind power time-series prediction, both proposed methods have shown at least 18.03 and 14.78 percentage improvement in forecast accuracy in terms of root mean square error (RMSE) as compared to contemporary methods considered in this study for direct and iterated strategies, respectively. Similarly, for wind speed data, those improvement observed to be 20.00 and 23.80 percentages, respectively. These attained prediction results evidenced the potential of the proposed models for the wind speed and wind power forecasting. The current proposed methodology is transformed into R package ‘decomposedPSF’ which is discussed in the Appendix.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3