Path planning of unmanned surface vehicle based on artificial potential field approach considering virtual target points

Author:

Luan Tiantian12345ORCID,Tan Zhenggang1ORCID,You Bo1ORCID,Sun Mingxiao145ORCID,Yao Hanhong3ORCID

Affiliation:

1. School of Automation, Harbin University of Science and Technology, China

2. Heilongjiang Provincial Technological Innovation Center of Efficient Molding of Composite Materials and Intelligent Equipment, China

3. Weihai HHH Cooperation MACH. ELEC. CO., LTD., China

4. Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, China

5. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China

Abstract

Aiming at the local minimum problem and target unreachable problems in the path planning of unmanned surface vehicle (USV), a path planning algorithm of USV considering virtual target point is proposed. For the target unreachable problem, a repulsive force potential field function is created. According to the measured distance between the target and the obstacle, the repulsive force of the target is zero, so that the USV can reach the target point. For the local minimum problem, the local minimum caused by various obstacles is analyzed, simulated annealing (SA) and artificial potential field approach (APFA) are combined to solve the minimum point problem caused by general obstacles. For the local minimum problem caused by special U-shaped obstacles, a virtual target point algorithm (VTPA) is established to solve this problem. The simulation results prove that this algorithm solves the problem of long path caused by too large repulsive force. Compared with Dual-Tree Rapidly exploring Random Tree (DT-RRT) algorithm, the efficiency of this algorithm has been significantly improved. Algorithm running time was reduced by 33.4%. Path length was reduced by 17.8%. Not only the time is saved, but also the path planning is optimized, so that the speed of the algorithm is accelerated.

Funder

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

National Science Foundation for Heilongjiang Province

Heilongjiang Provincial Technological Innovation Center of Efficient Molding of Composite Materials and Intelligent Equipment

National Science Foundation for Young Scientists of China

Heilongjiang Postdoctoral Grant

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3