Robust attitude control design for a low-cost hexarotor micro aerial vehicle

Author:

Derawi Dafizal1,Salim Nurul Dayana1,Zamzuri Hairi1,Abdul Rahman Mohd Azizi1,Nonami Kenzo2

Affiliation:

1. Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

2. Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Japan

Abstract

This article proposes a new practical robust attitude state feedback controller of a low-cost hexarotor micro aerial vehicle under the effects of noise in angular velocity measurements and multiple uncertainties (called the equivalent disturbance), which consist of external time-varying wind disturbance, nonlinear dynamics, coupling and parametric uncertainties. The proposed method is designed in two simple steps. Firstly, a nominal cascade controller is designed to reduce noise in angular velocity measurements and to achieve good attitude tracking performance in nominal conditions. Then, a second-order robust compensator is integrated into the closed-loop system to reduce the effects of the equivalent disturbance. The proposed control design is a linear time-invariant controller which is easily implemented in practical applications. Compared to other advanced attitude controllers, the proposed controller incurs lower computational costs and can easily be implemented in a low-cost embedded microcontroller system. In addition, a practical computational design procedure and an intuitive online tuning method for the proposed controller are presented in this article in order to provide a complete reference to micro aerial vehicle developers. The simulation and experimental results are presented to demonstrate the robustness of the proposed controller in operation in outdoor environments, to show good steady-state and dynamic tracking performance of the closed-loop system and to prove that the tracking errors are ultimately bounded within desired limits.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Sliding Mode Control of MEMS AC Voltage Reference Source;Journal of Control Science and Engineering;2017

2. Disturbance observers and applications;Transactions of the Institute of Measurement and Control;2016-04-25

3. Robust Optimal Attitude Controller for MIMO Uncertain Hexarotor MAVs: Disturbance Observer-Based;Mathematical Problems in Engineering;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3