Lightweight and intelligent model based on enhanced sparse filtering for rotating machine fault diagnosis

Author:

Ling Yunhan1,Fu Dianyu1ORCID,Jiang Peng1,Sun Yong1,Yuan Chao1ORCID,Huang Dali1,Lu Jingfeng2,Lu Siliang2

Affiliation:

1. Beijing Research Institute of Mechanical & Electrical Technology Ltd., P.R. China

2. College of Electrical Engineering and Automation, Anhui University, P.R. China

Abstract

Rotating machine fault diagnosis plays a vital role in reducing maintenance costs and preventing accidents. Machine learning (ML) methods and Internet of things (IoT) technologies have been recently introduced into machine fault diagnosis and have generated inspiring results. An ML model with more trainable parameters can typically generate a higher fault diagnostic accuracy. However, the IoT nodes have limited computation and storage resources. How to design an ML model with high accuracy and computational efficiency is still a difficulty and challenge. This work develops an enhanced sparse filtering (ESF) method for mining and fusing the features of the machine signals for fault diagnosis. First, a dimension reduction algorithm is utilized for obtaining the principal components of the vibration signals that are hindered by noises. The distinct features of the principal components are then exploited by using sparse filtering (SF). To reduce the overfitting of the SF model, the L1/2 norm is applied to regularize the objective function. Finally, the obtained features are combined as the inputs of a softmax classifier for machine fault pattern recognition. The effectiveness, superiority, and robustness of the proposed ESF method are validated by the simulated signals and the practical bearing and motor fault signals compared with the other conventional methods. The lightweight and intelligent ESF algorithm is also deployed onto an edge computing node to realize online motor fault diagnosis. The designed model and the proposed method show great potential in highly accurate and efficient rotation machine fault diagnosis.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3