Three-axis attitude stabilization of a flexible satellite using non-linear PD controller

Author:

Baghi Babak1,Kabganian Mansour1,Nadafi Reza2,Arabi Ehsan1

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Iran

2. Space Science and Technology Institute, Amirkabir University of Technology, Iran

Abstract

In this paper, after complete modelling of a flexible satellite equipped with a control moment gyroscope (CMG) actuator, it is shown that a PD-like controller can globally asymptotically stabilize this satellite by using Lyapunov’s direct method. Despite the simplicity, simulations show that the controller can stabilize the flexible satellite in a three-axis manoeuvre even in the presence of external disturbances. Then, using a non-linear variable gains PD controller, which only uses angular velocity of the rigid body and the attitude parameters as the inputs, the performance of the control system is improved in some important aspects such as reducing maximum control torque, reducing maximum peak of deflection of the appendages and increasing robustness of the controller against the orbital disturbances. In addition, locally asymptotically stability of the non-linear variable gain PD controller is guaranteed using a novel Lyapunov candidate function. Considering the difficulty in measuring the appendages’ deflection and the primarily existence of parameter uncertainties, and as this controller is independent of changes in these parameters, such a control system is very useful and applicable. In order to validate the system’s mathematical model and the control system performance, an exact model of the satellite is constructed in the ADAMS/View software that is linked to the MATLAB software. The efficacy of the proposed approach is demonstrated by several numerical examples.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3