A Sigmoid-plane adaptive control algorithm for unmanned surface vessel considering marine environment interference

Author:

Wu Gongxing1ORCID,Luo Wenjie1,Guo Jiamin1,Zhang Jiawei1

Affiliation:

1. College of Ocean Science and Engineering, Shanghai Maritime University, China

Abstract

This article presents an application of a Sigmoid-plane (S-plane) adaptive control algorithm to an automatic steering system in the presence of uncertain parametric of the unmanned surface vessel (USV) and the unknown disturbance of the marine environment. Due to technical difficulties such as sensor noise, the marine environment disturbance is assumed to be unmeasured. To overcome this problem, an S-plane control is designed to resist marine environment disturbances by the improved adaptive term. Based on the gradient method, the USV heading model reference adaptive controller of the USV is designed, so that the USV has a certain ability to resist model parameter changes. Considering the uncertainty of marine environment interference, a model-reference-based S-plane adaptive controller for the USV is designed. After the reference of the USV course model, the S-plane adaptive control approach is employed to reduce the effect of the marine environment. It is proved that the USV course control system is stable, despite the adverse bad sea conditions. Finally, the course control simulation experiment for the USV with the unknown marine environmental interference is carried out. To demonstrate the benefits of the S-plane adaptive controller, the results are presented in comparison with a Lyapunov method controller. The results show that the S-plane adaptive controller is robust to the changed model parameter and external disturbances.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3