A comparative study between IPSO and MIP for co-ordinated scheduling of electricity and heat within a microgrid

Author:

Xu Li-zhong12,Zhang Jin-jiang3,Bao Zhe-jing1,Cao Yi-jia4

Affiliation:

1. College of Electrical Engineering, Zhejiang University, Hangzhou, China

2. Zhejiang Electric Power Company, Hangzhou, China

3. College of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou, China

4. College of Electrical and Information Engineering, Hunan University, Changsha, China

Abstract

In this paper, an optimization model is developed for co-ordinately scheduling electricity and heat production within a microgrid. The model achieves the minimization of total operating cost including electricity and fuel consumption with various operational constraints considered. Comparative research between the mathematical method of mixed-integer programming (MIP) and meta-heuristic technique of improved particle swarm optimization (IPSO) for solving this model is implemented. Simulation results for the scheduling problem with different sizes and different operational constraints show that the solution precision achieved by IPSO and MIP is very similar, IPSO is much less time-consuming than MIP for the large-scale scheduling problem when the non-linear constraints of power flow within the microgrid are considered and the situation is the opposite when power flow constraints are not considered.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3