Heterogeneous computing and grid scheduling with parallel biologically inspired hybrid heuristics

Author:

Wang Jinglian12,Gong Bin1,Liu Hong3,Li Shaohui3,Yi Juan1

Affiliation:

1. School of Computer Science and Technology, Shandong University, Jinan, China

2. School of Information and Electrical Engineering (College of Software), Ludong University, Yantai, China

3. School of Information Science and Technology, Shandong Normal University, Jinan, China

Abstract

This work presents novel parallel biologically inspired hybrid heuristics for task scheduling in distributed heterogeneous computing and grid environments, and NP-hard problems with capital relevance in distributed computing. Firstly, sequential hybrid metaheuristics based on artificial immune systems (AIS) are developed to provide a good scheduler in reduced execution time and improved resource utilization. In the new AIS, affinities of the antibody’s genes are also effectively evaluated and regarded as memes from population real-time evolution; self-organized gene–meme co-evolution is simulated to improve population convergence; and appropriate Lyapunov functions inspired by interactive activation and competition neural networks are constructed to balance exploration and exploitation. Secondly, parallelization of the AIS-based algorithm is hierarchically designed and integrates with the two traditional parallel models (master–slave models and island models). The method has been specifically implemented on the newly developed supercomputer platform of hybrid multi-core CPU+GPU using C-CUDA for solving large-sized realistic instances. Numerical experiments are performed on both well known problem instances and large instances that model medium-sized grid environments. The comparative study shows that the proposed parallel approach is able to achieve high solving efficacy, outperforming previous results reported in the related literature, and also showing good scalability behaviour when facing high-dimension problem instances.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3