The instrument fault detection and identification based on kernel principal component analysis and coupling analysis in process industry

Author:

Liang Yanjie1ORCID,Gao Zhiyong1,Gao Jianmin1,Xu Guangnan1,Wang Rongxi1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, China

Abstract

This paper investigates the fault detection problem of instruments in process industry. Considering the difficulty of fault identification and the problems of multivariable and large computation complexity based on traditional kernel principal component analysis (KPCA), this paper presents a new method for fault detection and identification, which combines the coupling analysis with kernel principal component for multivariable fault detection and employed the local outlier factor (LOF) for multivariable fault identification. The new method consists of three parts. Firstly, according to nonlinear correlation of multivariable, coupling analysis and module division of variables based on detrended cross-correlation analysis (DCCA) are considered to reduce false alarm rate (FAR) and missed detection rate (MDR) in fault detection and identification. Secondly, KPCA is employed to detect fault in each sub-module of variables. Finally, for the sub-module which has the fault detected in second step, the LOF is adopted to calculate abnormal contribution of each variable in sub-modules to realize fault identification. To prove that the new method has the better capability of processing multivariable fault detection and the more accuracy rate on fault detection and identification than the conventional methods of KPCA, a case study on Tennessee process is carried out at the end.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3