A data-driven soft-sensing approach using probabilistic latent variable model with functional data framework

Author:

Tan Xiaoying1,Guo Wei12ORCID,Liu Ranran1,Pan Tianhong3ORCID

Affiliation:

1. School of Automobile and Traffic Engineering, Jiangsu University of Technology, P.R. China

2. School of Electrical Information and Engineering, Jiangsu University, P.R. China

3. School of Electrical Engineering and Automation, Anhui University, P.R. China

Abstract

Functional principal component analysis (FPCA) and functional partial least squares (FPLS) are two mainstream functional data analysis (FDA) methods, which have been commonly used to extract deep information hidden in the original data space. However, the process data always contain random noise, which affects the performance of FDA models. To overcome this issue, two functional probabilistic latent variable models (FPLVMs), including functional probabilistic principal component analysis (FPPCA) and functional probabilistic partial least squares (FPPLS) are proposed in this work. First, the process data are converted into functional data using the FDA. Subsequently, a log-likelihood function considering the noise factor and functional latent variables is designed. Finally, the regression model parameters are estimated using an expectation–maximisation algorithm. In contrast to FPPCA, FPPLS decomposes the process data and the key variable with constrained latent variables, which is similar to the partial least squares (PLS) and the principal component analysis (PCA). Moreover, the degeneration mechanism from FPLVMs into probabilistic latent variable models and latent variable models is discussed. An adaptive strategy with functional covariance is used to satisfy the online predictive capabilities of the model. Finally, the proposed approach is validated using a numerical case, the Tennessee Eastman process and an industrial o-xylene distillation column for evaluation.

Funder

National Natural Science Foundation of China

the Fundamental Science (Natural Science) Research Project of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3