Affiliation:
1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu, China
Abstract
With the development of location-based services, such as the Global Positioning System and Radio Frequency Identification, a great deal of trajectory data can be collected. Therefore, how to mine knowledge from these data has become an attractive topic. In this paper, we propose an efficient trajectory-clustering algorithm based on an index tree. Firstly, an index tree is proposed to store trajectories and their similarity matrix, with which trajectories can be retrieved efficiently; secondly, a new conception of trajectory structure is introduced to analyse both the internal and external features of trajectories; then, trajectories are partitioned into trajectory segments according to their corners; furthermore, the similarity between every trajectory segment pairs is compared by presenting the structural similarity function; finally, trajectory segments are grouped into different clusters according to their location in the different levels of the index tree. Experimental results on real data sets demonstrate not only the efficiency and effectiveness of our algorithm, but also the great flexibility that feature sensitivity can be adjusted by different parameters, and the cluster results are more practically significant.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献