An Efficient Trajectory Representative Generation Moving Web-Based Data Prediction Using Different Clustering Algorithms

Author:

Mishra Vishnu Kumar1,Mishra Megha2,Dewangan Bhupesh Kumar3ORCID,Choudhury Tanupriya4

Affiliation:

1. Shri Shankaracharya Institute of Engineering and Technology, India

2. Shri Shankaracharya Institute of Engineering and Technology, India & Chhattisgarh Swami Vivekanand Technical University, India

3. O.P. Jindal University, Raigarh, India

4. University of Petroleum and Energy Studies, India

Abstract

This paper highlighted moving and trajectory object cluster (MOTRACLUS) algorithm and analyzed the sub-trajectories and real-trajectories algorithm for moving web-based data and suggested a new approach of moving elements. This paper evaluates the hurricane data measure and mass less data measure entropy of trajectories objects of moving data of Chhattisgarh location. The paper covered prediction generation with their distance cluster minimum description length (MDL) algorithm and other corresponding distance cluster (CLSTR) algorithm. This paper highlighted the k-nearest algorithm with least cluster section (LCSS) model and dimensional Euclidean of MDL algorithm. The algorithm consists of two parts, that is, partitioning and grouping phase. This paper develops and enhances a cluster of trajectory objects and calculates the actual distance of moving objects. This algorithm works on the CLSTR algorithm and calculates trajectory movement of the object. In this, the authors evaluate the entropy of moving objects by consideration of the heuristic parameter.

Publisher

IGI Global

Subject

Management of Technology and Innovation,Information Systems

Reference34 articles.

1. Sla-based autonomic cloud resource management framework by antlion optimization algorithm.;A.Agarwal;International Journal of Innovative Technology and Exploring Engineering,2019

2. Al-Sharif, Z. A., Jararweh, Y., Al-Dahoud, A., & Alawneh, L. M. (2017). Autonomic based cloud computing resource scaling. Cluster Computing, 4(1), 1-10.

3. Defense in Depth for Data Storage in Cloud Computing.;S. K.Baghel;International Journal of Technology,2012

4. Chen, X., Kordy, P., Lu, R., & Pang, J. (2014). Machine Learning and Knowledge Discovery in Databases MinUS: Mining User Similarity with Trajectory Patterns. European Conference, ECML PKDD, Nancy, France,Proceedings, Part III, 436-439.

5. Cloud resource optimization system based on time and cost. International Journal of Mathematical;B. K.Dewangan;Engineering and Management Sciences,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3