Lyapunov-based fractional-order PID controller design for coupled nonlinear system

Author:

Zaki Hammad12ORCID,Rashid Aamir1,Masud Usman1

Affiliation:

1. Department of Electronics Engineering, UET Taxila, Pakistan

2. Departement of Mechatronics Engineering, Sabanci University, Turkey

Abstract

Coupled nonlinear systems are difficult to control due to the adverse effects of uncertainties and coupling effects with increased sensor noise. This paper proposes an improved Lyapunov-based composite controller consisting of fractional-order proportional–integral–derivative (FOPID) and velocity-based disturbance observer to deal with the motion control of uncertain, nonlinear, and coupled system. FOPID utilizes the stable filtered error to facilitate the control development and stability analysis for the multi-input multi-output (MIMO) coupled system. Moreover, a disturbance observer is developed by utilizing the velocity signals to provide robustness against the disturbances and parametric uncertainties. Enhanced infinite order disturbance observer (EIFDOB) structure is used to improve the robustness of the introduced technique despite the high-frequency sensor noise. Stability analysis is provided to verify the introduced controller through the Lyapunov stability theorem, LaSalle’s invariance principle, and Barbalat’s lemma. Signal chasing is also presented to show that all signals are ultimately bounded. Comprehensive numerical simulations are performed on high-fidelity and coupled nonlinear model of the twin rotor MIMO system where the efficiency of the presented technique is examined against the external disturbances, matched uncertainties, and sensor noise. The results presented with different scenarios show that the proposed technique performed better with more robustness than FOPID and integer order proportional–integral–derivative.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3