Effect of aortic cannulation depth on air emboli transport during cardiopulmonary bypass: A computational study

Author:

Ho Raymond12ORCID,McDonald Charles3,Pauls Jo P24,Li Zhiyong1

Affiliation:

1. School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia

2. Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Brisbane, Qld, Australia

3. Department of Anaesthesia and Perfusion, The Prince Charles Hospital, Chermside, Qld, Australia

4. School of Engineering and Built Environment, Griffith University, Southport, QLD, Australia

Abstract

Introduction Varying the insertion depth of the aortic cannula during cardiopulmonary bypass (CPB) has been investigated as a strategy to mitigate cerebral emboli, yet its effectiveness associated with CPB flow is not fully understood. We compared different arterial cannula insertion depths and pump flow influencing air microemboli entering the aortic arch branch arteries (AABA). Methods A computational approach used a patient-specific aorta model to evaluate four cannula locations at (1) proximal arch, (2) mid arch, (3) distal arch, and (4) descending aorta. We injected 0.1 mm microemboli (N=720) at 2 and 5 L/min and assessed the embolic load and the particle averaged transit times ( entering the AABA. Results Location 4 had the lowest embolic load (2 L/min: N= 63) and (5 L/min: N= 54) compared to locations 1 to 3 in the range of (N= 118 to 116 at 2 L/min:) and (N= 92 to 146 at 5 L/min). There was no significant difference between 2 L/min and 5 L/min (p = 0.31), despite 5 L/min attaining a lower mean (±standard deviation) than 2 L/min (38.0±23.4 vs 44.5±21.1), respectively. Progressing from location 1 to 4, increased 3.11s -7.40 s at 2 L/min and 1.81s -4.18s at 5 L/min. Conclusion It was demonstrated that the elongated cannula insertion length resulted in lower embolic loads, particularly at a higher flow rate. The numerical results suggest that CPB management could combine active flow variation with improving cannula performance and provide a foundation for a future experimental and clinical investigation to reduce surgical cerebral air microemboli.

Publisher

SAGE Publications

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3