Can minimized cardiopulmonary bypass systems be safer?

Author:

Ganushchak YM1,Ševerdija EE1,Simons AP1,van Garsse L1,Weerwind PW1

Affiliation:

1. Dept. of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht – CARIM, Maastricht University Medical Center, Maastricht, the Netherlands

Abstract

Although a growing body of evidence indicates superiority of minimized cardiopulmonary bypass (mCPB) systems over conventional CPB systems, limited venous return can result in severe fluctuations of venous line pressure which can result in gaseous emboli. In this study, we investigated the influence of sub-atmospheric pressures and volume buffer capacity added to the venous line on the generation of gaseous emboli in the mCPB circuit. Two different mCPB systems (MEC - Maquet, n=7 and ECC.O - Sorin, n=8) and a conventional closed cardiopulmonary bypass (cCPB) system (n=12) were clinically evaluated. In the search for a way to increase volume buffer capacity of mCPB systems, we additionally evaluated the ‘Better Bladder’ (BB) in a mock circulation by simulating, repeatedly, decreased venous return while measuring pressure and gaseous embolic activity. Arterial gaseous emboli activity during clinical perfusion with a cCPB system was the lowest in comparison to the mCPB systems (312±465 versus 311±421 with MEC and 1,966±1,782 with ECC.O, counts per 10 minute time interval, respectively; p=0.03). The average volume per bubble in the arterial line was the highest in cases with cCPB (12.5±8.3 nL versus 8.0±4.2 nL with MEC and 4.6±4.8 nL with ECC.O; p=0.04 for both). Significant cross-correlation was obtained at various time offsets from 0 to +35 s between sub-atmospheric pressure in the venous line and gaseous emboli activity in both the venous and arterial lines. The in vitro data showed that incorporation of the BB dampens fluctuations of venous line pressure by approximately 30% and decreases gaseous emboli by up to 85%. In conclusion, fluctuations of sub-atmospheric venous line pressure during kinetic-assisted drainage are related to gaseous emboli. Volume buffer capacity added to the venous line can effectively dampen pressure fluctuations resulting from abrupt changes in venous return and, therefore, can help to increase the safety of minimized cardiopulmonary bypass by reducing gaseous microemboli formation resulting from degassing.

Publisher

SAGE Publications

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3