Hypothermic circulatory arrest does not induce coagulopathy in vitro

Author:

Ise Hayato,Oyama KyoheiORCID,Kunioka Shingo,Shirasaka Tomonori,Kanda Hirotsugu,Akhyari Payam,Kamiya Hiroyuki

Abstract

AbstractHypothermic circulatory arrest (HCA) is an essential procedure during aortic surgery to protect organs; however, hypothermia is believed to cause coagulopathy, which is a major fatal complication. This study aimed to clarify the impact of hypothermia on coagulation by eliminating clinical biases in vitro. In the hypothermic storage study, blood samples from five healthy volunteers were stored at 37 ℃ (group N) for 3 h or at 20 ℃ for 2 h, followed by 1 h of rewarming at 37 ℃ (group H). Thromboelastography was performed before and after 3 h of storage. In the mock circulation loop (MCL) study, blood samples were placed in the MCL and (a) maintained at 37 ℃ for 4 h (group N, n = 5), or (b) cooled to 20 ℃ to simulate HCA with a 0.1 L/min flow rate for 3 h and then rewarmed to 37 ℃ (group H, n = 5). The total MCL duration was 4 h, and the flow rate was maintained at 1 L/min, except during HCA. Blood samples collected 15 min after the beginning and end of MCL were subjected to standard laboratory tests and rotational thromboelastometry analyses. Hypothermia had no impact on coagulation in both the hypothermic storage and MCL studies. MCL significantly decreased the platelet counts and clot elasticity in the INTEM and EXTEM assays; however, there was no effect on fibrinogen contribution measured by FIBTEM. Hypothermia does not cause irreversible coagulopathy in vitro; however, MCL decreases coagulation due to the deterioration of platelets.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3