In-vitro performance of a low flow extracorporeal carbon dioxide removal circuit

Author:

Barrett Nicholas A12ORCID,Hart Nicholas23,Camporota Luigi12

Affiliation:

1. Department of Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, London, UK

2. Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK

3. Lane Fox Respiratory Unit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK

Abstract

Introduction: Extracorporeal gas exchange requires the passage of oxygen and carbon dioxide (CO2) across an artificial membrane. Current European Union regulations do not require the transfer to be assessed in models using clinically relevant haemoglobin, making it difficult for clinicians to understand the CO2 clearance of a membrane, and how it changes in relation to sweep gas flow through the membrane. The characteristics of membrane CO2 clearance are described using a single membrane at different sweep gas flows in an in vitro model with clinically relevant haemoglobin concentrations using three separate methods of calculating CO2 clearance. Methods: To define the CO2 removal characteristics of the extra-corporeal CO2 removal (ECCO2R) device, we devised an in-vitro gas exchange circuit formed by a dedicated ECCO2R circuit (ALung, Pittsburgh, USA) in series with two membrane oxygenators. The system was primed with donated expired human red cells provided by the local blood bank. The experimental set-up allowed constant CO2 input (via one membrane oxygenator) with variable removal from a portion of the blood in a manner which was analogous to that seen in vivo. Blood gases were measured from different ports in the circuit in order to measure the experimental membrane CO2 clearance (VCO2). Results: Results demonstrate that the relationship between VCO2 and gas flow at a constant blood flow of 0.4 L/minute with a haemoglobin of 7 g/dL increases sharply from a gas flow of 0 to 2 L/min but plateaus at gas flows >4 L/minute. VCO2, calculated using three different methods, showed a strong linear correlation with minimal bias. Conclusions: The CO2 clearance of the membrane used in this bench test is non-linear. This has implications for clinical practice, especially during the weaning phase of the device.

Publisher

SAGE Publications

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3