Guidelines for Diagnosing and Quantifying Noise-Induced Hearing Loss

Author:

Moore Brian C. J.1ORCID,Lowe David A.2ORCID,Cox Graham3ORCID

Affiliation:

1. Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, UK

2. ENT Department, James Cook University Hospital, Cleveland, UK

3. ENT Department (retired), Oxford University Hospitals NHS Foundation Trust, Oxford, UK

Abstract

This paper makes recommendations for the diagnosis and quantification of noise-induced hearing loss (NIHL) in a medico-legal context. A distinction is made between NIHL produced by: steady broadband noise, as occurs in some factories; more impulsive factory sounds, such as hammering; noise exposure during military service, which can involve very high peak sound levels; and exposure to very intense tones. It is argued that existing diagnostic methods, which were primarily developed to deal with NIHL produced by steady broadband noise, are not adequate for the diagnosis of NIHL produced by different types of exposures. Furthermore, some existing diagnostic methods are based on now-obsolete standards, and make unrealistic assumptions. Diagnostic methods are proposed for each of the types of noise exposure considered. It is recommended that quantification of NIHL for all types of exposures is based on comparison of the measured hearing threshold levels with the age-associated hearing levels (AAHLs) for a non-noise exposed population, as specified in ISO 7029 (2017), usually using the 50th percentile, but using another percentile if there are good reasons for doing so. When audiograms are available both soon after the end of military service and some time afterwards, the most recent audiogram should be used for diagnosis and quantification, since this reflects any effect of the noise exposure on the subsequent progression of hearing loss. It is recommended that the overall NIHL for each ear be quantified as the average NIHL across the frequencies 1, 2, and 4 kHz.

Funder

Medical Research Council

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3