Sensitivity of Methods for Diagnosing Noise-Induced Hearing Loss in Cases of Exposures Including Intense Low-Frequency Noise

Author:

Moore Brian C.J.1ORCID,Cox Graham2

Affiliation:

1. Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, UK

2. ENT Department (retired), Oxford University Hospitals NHS Foundation Trust, Oxford, UK

Abstract

Exposure to intense low-frequency sounds, for example inside tanks and armoured vehicles, can lead to noise-induced hearing loss (NIHL) with a variable audiometric pattern, including low- and mid-frequency hearing loss. It is not known how well existing methods for diagnosing NIHL apply in such cases. Here, the audiograms of 68 military personnel (mostly veterans) who had been exposed to intense low-frequency noise (together with other types of noise) and who had low-frequency hearing loss (defined as a pure-tone average loss at 0.25, 0.5 and 1 kHz ≥20 dB) were used to assess the sensitivity of three diagnostic methods: the method of Coles, Lutman and Buffin, denoted CLB, which depends on the identification of a notch or bulge in the audiogram near 4 kHz, and two methods specifically intended for diagnosing NIHL sustained during military service, the rM-NIHL method, which depends on the identification of a notch or bulge in the audiogram near 4 kHz and/or a hearing loss at high frequencies greater than expected from age alone, and the MLP(18) method based on a multi-layer perceptron. The proportion of individuals receiving a positive diagnosis for either or both ears, which provides an approximate measure of sensitivity, was 0.40 for the CLB method, 0.79 for the rM-NIHL method and 1.0 for the MLP(18) method. It is concluded that the MLP(18) method is suitable for diagnosing NIHL sustained during military service whether or not the exposure includes intense low-frequency sounds.

Funder

Medical Research Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3