Measuring and Modeling Cue Dependent Spatial Release from Masking in the Presence of Typical Delays in the Treatment of Hearing Loss

Author:

Angermeier Julian12ORCID,Hemmert Werner2ORCID,Zirn Stefan1ORCID

Affiliation:

1. Peter Osypka Institute of Medical Engineering, Faculty of Electrical Engineering, Medical Engineering and Computer Sciences, University of Applied Sciences Offenburg

2. Bio-Inspired Information Processing, Munich Institute of Biomedical Engineering, Technical University of Munich

Abstract

In asymmetric treatment of hearing loss, processing latencies of the modalities typically differ. This often alters the reference interaural time difference (ITD) (i.e., the ITD at 0° azimuth) by several milliseconds. Such changes in reference ITD have shown to influence sound source localization in bimodal listeners provided with a hearing aid (HA) in one and a cochlear implant (CI) in the contralateral ear. In this study, the effect of changes in reference ITD on speech understanding, especially spatial release from masking (SRM) in normal-hearing subjects was explored. Speech reception thresholds (SRT) were measured in ten normal-hearing subjects for reference ITDs of 0, 1.75, 3.5, 5.25 and 7 ms with spatially collocated (S0N0) and spatially separated (S0N90) sound sources. Further, the cues for separation of target and masker were manipulated to measure the effect of a reference ITD on unmasking by A) ITDs and interaural level differences (ILDs), B) ITDs only and C) ILDs only. A blind equalization-cancellation (EC) model was applied to simulate all measured conditions. SRM decreased significantly in conditions A) and B) when the reference ITD was increased: In condition A) from 8.8 dB SNR on average at 0 ms reference ITD to 4.6 dB at 7 ms, in condition B) from 5.5 dB to 1.1 dB. In condition C) no significant effect was found. These results were accurately predicted by the applied EC-model. The outcomes show that interaural processing latency differences should be considered in asymmetric treatment of hearing loss.

Funder

MED-EL Medical Electronics

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3