Clinical Feasibility and Familiarization Effects of Device Delay Mismatch Compensation in Bimodal CI/HA Users

Author:

Angermeier Julian12ORCID,Hemmert Werner2ORCID,Zirn Stefan1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Medical Engineering and Computer Sciences, Peter Osypka Institute of Medical Engineering, University of Applied Sciences Offenburg, Offenburg, Germany

2. Bio-Inspired Information Processing, Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany

Abstract

Subjects utilizing a cochlear implant (CI) in one ear and a hearing aid (HA) on the contralateral ear suffer from mismatches in stimulation timing due to different processing latencies of both devices. This device delay mismatch leads to a temporal mismatch in auditory nerve stimulation. Compensating for this auditory nerve stimulation mismatch by compensating for the device delay mismatch can significantly improve sound source localization accuracy. One CI manufacturer has already implemented the possibility of mismatch compensation in its current fitting software. This study investigated if this fitting parameter can be readily used in clinical settings and determined the effects of familiarization to a compensated device delay mismatch over a period of 3–4 weeks. Sound localization accuracy and speech understanding in noise were measured in eleven bimodal CI/HA users, with and without a compensation of the device delay mismatch. The results showed that sound localization bias improved to 0°, implying that the localization bias towards the CI was eliminated when the device delay mismatch was compensated. The RMS error was improved by 18% with this improvement not reaching statistical significance. The effects were acute and did not further improve after 3 weeks of familiarization. For the speech tests, spatial release from masking did not improve with a compensated mismatch. The results show that this fitting parameter can be readily used by clinicians to improve sound localization ability in bimodal users. Further, our findings suggest that subjects with poor sound localization ability benefit the most from the device delay mismatch compensation.

Funder

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

MED-EL Medical Electronics

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3