Diagnosing Noise-Induced Hearing Loss Sustained During Military Service Using Deep Neural Networks

Author:

Moore Brian C.J.1ORCID,Schlittenlacher Josef2

Affiliation:

1. Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, UK

2. Department of Speech, Hearing and Phonetic Sciences, University College London, London, UK

Abstract

The diagnosis of noise-induced hearing loss (NIHL) is based on three requirements: a history of exposure to noise with the potential to cause hearing loss; the absence of known causes of hearing loss other than noise exposure; and the presence of certain features in the audiogram. All current methods for diagnosing NIHL have involved examination of the typical features of the audiograms of noise-exposed individuals and the formulation of quantitative rules for the identification of those features. This article describes an alternative approach based on the use of multilayer perceptrons (MLPs). The approach was applied to databases containing the ages and audiograms of individuals claiming compensation for NIHL sustained during military service (M-NIHL), who were assumed mostly to have M-NIHL, and control databases with no known exposure to intense sounds. The MLPs were trained so as to classify individuals as belonging to the exposed or control group based on their audiograms and ages, thereby automatically identifying the features of the audiogram that provide optimal classification. Two databases (noise exposed and nonexposed) were used for training and validation of the MLPs and two independent databases were used for evaluation and further analyses. The best-performing MLP was one trained to identify whether or not an individual had M-NIHL based on age and the audiogram for both ears. This achieved a sensitivity of 0.986 and a specificity of 0.902, giving an overall accuracy markedly higher than for previous methods.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3