Investigation of the effectiveness of top-down natural ventilation of a poultry building in a hot-summer mediterranean climate

Author:

Fezai Mariem1ORCID,Tashtoush Bourhan2,Ghoulem Marouen1ORCID,Elmoueddeb Khaled1,Elakhdar Mouna3

Affiliation:

1. Research Laboratory Mechanics, Energy, and Agro-industry, Higher School of Engineers in Medjez El Bab (ESIM), Medjez El Bab, Tunisia

2. Mechanical Engineering Department, Jordan University of Science and Technology (JUST), Irbid, Jordan

3. Research Laboratry Energetic and Environment, National Engineering School of Tunis(ENIT), Tunis El Manar University, Tunis, Tunisia

Abstract

In this study, computational fluid dynamics (CFD) was used to examine the efficiency of ventilation and airflow patterns in a multi-level layer hen house. The utilization of windcatchers as a natural ventilation system was the main area of focus. By comparing CFD simulations with experimental data using ANSYS Fluent, the results were validated. The findings showed good agreement in airflow velocity within the windcatchers and throughout the entire building between the CFD calculations and the experimental tests, resulting in uniform airflow distribution and the absence of turbulence in the area where the chickens were kept. This setup provided the layer hens with an acceptable level of comfort by maintaining a consistent and steady temperature profile. The windcatcher-based model demonstrated better temperature uniformity than mechanical window ventilation. The study also emphasized the importance of maintaining appropriate humidity levels throughout the building to ensure the comfort and productivity of layer hens. The advantages of the windcatcher-based system in terms of temperature distribution and airflow control were highlighted by comparison with an alternative ventilation model. These results underscore the importance of using natural ventilation systems, such as windcatchers, to create optimal ventilation conditions and provide layer hens with a comfortable and productive environment (resulting in a temperature reduction from 29°C to 19.85°C with a low and uniform air velocity ranging from 0 m/s to 0.7 m/s at cage level). Practical application An effective and eco-friendly approach to enhance animal health and productivity in poultry farms is to install a natural ventilation system with wind collectors. This setup creates optimal conditions for the animals by improving air quality, regulating temperature, and fine-tuning ventilation. Additionally, it promotes overall sustainability in poultry facilities by lowering energy costs and advocating for environmentally friendly management, aligning agricultural practices with stringent environmental standards.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3